Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.

Identifieur interne : 001A13 ( Main/Exploration ); précédent : 001A12; suivant : 001A14

Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.

Auteurs : Arshad Ali Shedayi [Pakistan] ; Ming Xu [États-Unis] ; Iqnaa Naseer [Pakistan] ; Babar Khan [Pakistan]

Source :

RBID : pubmed:27066349

Abstract

This study aimed to investigate the correlation of carbon and nitrogen in soil and leaves with the altitude, vegetation type, herbaceous biomass (HB), litter mass (LM) and with each other. Soil and leaf samples collected from different forest types along altitudinal gradients in the Karakoram Mountains. Dry and gas law methods were used for the chemical analysis. Regression models used for correlation analysis and T test for comparison. The correlation of soil total carbon (STC) and soil total nitrogen (STN) along altitudinal gradients and correlation between soil organic carbon (SOC) and STN was significantly positive with the values R(2) = 0.1684, p = 0.01, R(2) = 0.1537, p = 0.009 and R(2) = 0.856, p = 7.31E-10 respectively, while it was non-significant between soil inorganic carbon (SIC) and altitude and also between SIC and STN. The concentration of SOC and STN was highest in the broad leaved Betula utilis forest (22.31, 1.6 %) and least in the mixed (Pinus, Juniper, Betula) forest soil (0.85, 0.09 %) respectively. In the tree species leaf total carbon (LTC) and leaf total nitrogen (LTN) were highest in the Pinus wallichiana (PW) (632.54, 19.77), and least in the Populus alba (87.59, 4.06). In the shrub species LTC and LTN nitrogen were highest in the Rosa webiana (235.64, 7.45) and least in the Astragalus gilgitensis (43.45, 1.60) respectively. Total carbon and total nitrogen showed a slightly decreasing and increasing trend with altitude in the leaf and soil samples, respectively. The mean nitrogen and carbon was higher in the leaves of trees (3, 97.95) than in the shrubs (2.725, 74.24) and conifers (2.26, 76.46) than in the leaves of the deciduous (2, 46.36) trees. The correlation between LTC and STN was non-significant. Strong significant (R(2) = 0.608, p = 0.003) and weak non-significant (R(2) = 0.04, p = 0.32) relationships were found in STN and STC with LM and HB respectively. SOC (75.15 %) was found to be the main contributor to the STC (76.20 %) as compared to the SIC (1.05 %). Furthermore, SOC (75.15 %) was the major constituent to the soil organic matter (SOM) as compared to the STN (5.85 %). The vegetation type and litter both showed high impact on STN and STC, while altitude and HB showed very little or no impact on carbon and nitrogen concentrations. However, altitude puts great impact on shaping vegetation structure due to decreasing temperature along the elevation and other climatic factors which are further responsible in controlling the carbon and nitrogen concentration.

DOI: 10.1186/s40064-016-1935-9
PubMed: 27066349
PubMed Central: PMC4788676


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.</title>
<author>
<name sortKey="Shedayi, Arshad Ali" sort="Shedayi, Arshad Ali" uniqKey="Shedayi A" first="Arshad Ali" last="Shedayi">Arshad Ali Shedayi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Sciences, Beijing, China ; Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Sciences, Beijing, China ; Department of Biological Sciences, Karakoram International University, Gilgit</wicri:regionArea>
<wicri:noRegion>Gilgit</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Ming" sort="Xu, Ming" uniqKey="Xu M" first="Ming" last="Xu">Ming Xu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Naseer, Iqnaa" sort="Naseer, Iqnaa" uniqKey="Naseer I" first="Iqnaa" last="Naseer">Iqnaa Naseer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Gujrat, Gujrat city, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Botany, University of Gujrat, Gujrat city</wicri:regionArea>
<wicri:noRegion>Gujrat city</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khan, Babar" sort="Khan, Babar" uniqKey="Khan B" first="Babar" last="Khan">Babar Khan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Gilgit conservation and information centre, WWF, Gilgit, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Gilgit conservation and information centre, WWF, Gilgit</wicri:regionArea>
<wicri:noRegion>Gilgit</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27066349</idno>
<idno type="pmid">27066349</idno>
<idno type="doi">10.1186/s40064-016-1935-9</idno>
<idno type="pmc">PMC4788676</idno>
<idno type="wicri:Area/Main/Corpus">001840</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001840</idno>
<idno type="wicri:Area/Main/Curation">001840</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001840</idno>
<idno type="wicri:Area/Main/Exploration">001840</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.</title>
<author>
<name sortKey="Shedayi, Arshad Ali" sort="Shedayi, Arshad Ali" uniqKey="Shedayi A" first="Arshad Ali" last="Shedayi">Arshad Ali Shedayi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Sciences, Beijing, China ; Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Sciences, Beijing, China ; Department of Biological Sciences, Karakoram International University, Gilgit</wicri:regionArea>
<wicri:noRegion>Gilgit</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Ming" sort="Xu, Ming" uniqKey="Xu M" first="Ming" last="Xu">Ming Xu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Naseer, Iqnaa" sort="Naseer, Iqnaa" uniqKey="Naseer I" first="Iqnaa" last="Naseer">Iqnaa Naseer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Gujrat, Gujrat city, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Botany, University of Gujrat, Gujrat city</wicri:regionArea>
<wicri:noRegion>Gujrat city</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khan, Babar" sort="Khan, Babar" uniqKey="Khan B" first="Babar" last="Khan">Babar Khan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Gilgit conservation and information centre, WWF, Gilgit, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Gilgit conservation and information centre, WWF, Gilgit</wicri:regionArea>
<wicri:noRegion>Gilgit</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">SpringerPlus</title>
<idno type="ISSN">2193-1801</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study aimed to investigate the correlation of carbon and nitrogen in soil and leaves with the altitude, vegetation type, herbaceous biomass (HB), litter mass (LM) and with each other. Soil and leaf samples collected from different forest types along altitudinal gradients in the Karakoram Mountains. Dry and gas law methods were used for the chemical analysis. Regression models used for correlation analysis and T test for comparison. The correlation of soil total carbon (STC) and soil total nitrogen (STN) along altitudinal gradients and correlation between soil organic carbon (SOC) and STN was significantly positive with the values R(2) = 0.1684, p = 0.01, R(2) = 0.1537, p = 0.009 and R(2) = 0.856, p = 7.31E-10 respectively, while it was non-significant between soil inorganic carbon (SIC) and altitude and also between SIC and STN. The concentration of SOC and STN was highest in the broad leaved Betula utilis forest (22.31, 1.6 %) and least in the mixed (Pinus, Juniper, Betula) forest soil (0.85, 0.09 %) respectively. In the tree species leaf total carbon (LTC) and leaf total nitrogen (LTN) were highest in the Pinus wallichiana (PW) (632.54, 19.77), and least in the Populus alba (87.59, 4.06). In the shrub species LTC and LTN nitrogen were highest in the Rosa webiana (235.64, 7.45) and least in the Astragalus gilgitensis (43.45, 1.60) respectively. Total carbon and total nitrogen showed a slightly decreasing and increasing trend with altitude in the leaf and soil samples, respectively. The mean nitrogen and carbon was higher in the leaves of trees (3, 97.95) than in the shrubs (2.725, 74.24) and conifers (2.26, 76.46) than in the leaves of the deciduous (2, 46.36) trees. The correlation between LTC and STN was non-significant. Strong significant (R(2) = 0.608, p = 0.003) and weak non-significant (R(2) = 0.04, p = 0.32) relationships were found in STN and STC with LM and HB respectively. SOC (75.15 %) was found to be the main contributor to the STC (76.20 %) as compared to the SIC (1.05 %). Furthermore, SOC (75.15 %) was the major constituent to the soil organic matter (SOM) as compared to the STN (5.85 %). The vegetation type and litter both showed high impact on STN and STC, while altitude and HB showed very little or no impact on carbon and nitrogen concentrations. However, altitude puts great impact on shaping vegetation structure due to decreasing temperature along the elevation and other climatic factors which are further responsible in controlling the carbon and nitrogen concentration. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27066349</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2193-1801</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>SpringerPlus</Title>
<ISOAbbreviation>Springerplus</ISOAbbreviation>
</Journal>
<ArticleTitle>Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.</ArticleTitle>
<Pagination>
<MedlinePgn>320</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40064-016-1935-9</ELocationID>
<Abstract>
<AbstractText>This study aimed to investigate the correlation of carbon and nitrogen in soil and leaves with the altitude, vegetation type, herbaceous biomass (HB), litter mass (LM) and with each other. Soil and leaf samples collected from different forest types along altitudinal gradients in the Karakoram Mountains. Dry and gas law methods were used for the chemical analysis. Regression models used for correlation analysis and T test for comparison. The correlation of soil total carbon (STC) and soil total nitrogen (STN) along altitudinal gradients and correlation between soil organic carbon (SOC) and STN was significantly positive with the values R(2) = 0.1684, p = 0.01, R(2) = 0.1537, p = 0.009 and R(2) = 0.856, p = 7.31E-10 respectively, while it was non-significant between soil inorganic carbon (SIC) and altitude and also between SIC and STN. The concentration of SOC and STN was highest in the broad leaved Betula utilis forest (22.31, 1.6 %) and least in the mixed (Pinus, Juniper, Betula) forest soil (0.85, 0.09 %) respectively. In the tree species leaf total carbon (LTC) and leaf total nitrogen (LTN) were highest in the Pinus wallichiana (PW) (632.54, 19.77), and least in the Populus alba (87.59, 4.06). In the shrub species LTC and LTN nitrogen were highest in the Rosa webiana (235.64, 7.45) and least in the Astragalus gilgitensis (43.45, 1.60) respectively. Total carbon and total nitrogen showed a slightly decreasing and increasing trend with altitude in the leaf and soil samples, respectively. The mean nitrogen and carbon was higher in the leaves of trees (3, 97.95) than in the shrubs (2.725, 74.24) and conifers (2.26, 76.46) than in the leaves of the deciduous (2, 46.36) trees. The correlation between LTC and STN was non-significant. Strong significant (R(2) = 0.608, p = 0.003) and weak non-significant (R(2) = 0.04, p = 0.32) relationships were found in STN and STC with LM and HB respectively. SOC (75.15 %) was found to be the main contributor to the STC (76.20 %) as compared to the SIC (1.05 %). Furthermore, SOC (75.15 %) was the major constituent to the soil organic matter (SOM) as compared to the STN (5.85 %). The vegetation type and litter both showed high impact on STN and STC, while altitude and HB showed very little or no impact on carbon and nitrogen concentrations. However, altitude puts great impact on shaping vegetation structure due to decreasing temperature along the elevation and other climatic factors which are further responsible in controlling the carbon and nitrogen concentration. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shedayi</LastName>
<ForeName>Arshad Ali</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Sciences, Beijing, China ; Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Naseer</LastName>
<ForeName>Iqnaa</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Gujrat, Gujrat city, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Babar</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Gilgit conservation and information centre, WWF, Gilgit, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Springerplus</MedlineTA>
<NlmUniqueID>101597967</NlmUniqueID>
<ISSNLinking>2193-1801</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Altitude</Keyword>
<Keyword MajorTopicYN="N">Forest type</Keyword>
<Keyword MajorTopicYN="N">Herbaceous biomass</Keyword>
<Keyword MajorTopicYN="N">Leaf total carbon</Keyword>
<Keyword MajorTopicYN="N">Leaf total nitrogen</Keyword>
<Keyword MajorTopicYN="N">Litter mass</Keyword>
<Keyword MajorTopicYN="N">Soil inorganic carbon</Keyword>
<Keyword MajorTopicYN="N">Soil organic carbon</Keyword>
<Keyword MajorTopicYN="N">Soil total carbon</Keyword>
<Keyword MajorTopicYN="N">Soil total nitrogen</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27066349</ArticleId>
<ArticleId IdType="doi">10.1186/s40064-016-1935-9</ArticleId>
<ArticleId IdType="pii">1935</ArticleId>
<ArticleId IdType="pmc">PMC4788676</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Water Res. 2011 Nov 15;45(18):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21943886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2015 Feb;187(2):55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25638061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2011 Nov;1(3):421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22393511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1986 Dec;52(6):1280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Nov;22(15-16):1193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 28;8(6):e68251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Sep 12;321(5895):1455-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 2;326(5949):123-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19713491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 24;461(7263):472-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Springerplus. 2014 Aug 30;3:491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25221742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23713123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2010 Mar 15;408(8):1925-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20129647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pakistan</li>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<country name="Pakistan">
<noRegion>
<name sortKey="Shedayi, Arshad Ali" sort="Shedayi, Arshad Ali" uniqKey="Shedayi A" first="Arshad Ali" last="Shedayi">Arshad Ali Shedayi</name>
</noRegion>
<name sortKey="Khan, Babar" sort="Khan, Babar" uniqKey="Khan B" first="Babar" last="Khan">Babar Khan</name>
<name sortKey="Naseer, Iqnaa" sort="Naseer, Iqnaa" uniqKey="Naseer I" first="Iqnaa" last="Naseer">Iqnaa Naseer</name>
</country>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Xu, Ming" sort="Xu, Ming" uniqKey="Xu M" first="Ming" last="Xu">Ming Xu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27066349
   |texte=   Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27066349" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020